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Introduction

Introduction

In this module and several that follow, we examine a selection of classic examples of
structural equation models with continuous variables.
These models illustrate a number of core techniques and problem issues in structural
equation modeling.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

In the early days of structural equation modeling, LISREL was the only available program
for doing structural equation modeling.
A number of the examples in the LISREL manual used data from publications which
included only information on the correlation matrix.
Moreover, in the case of factor analysis, the typical procedure was to factor analyze the
correlation matrix rather than the covariance matrix.
The problem was that the distribution theory LISREL was using assumed that the data
matrix being analyzed was a covariance matrix.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

Recall that the ML discrepancy function is

FML(S,M(θ)) = log |M(θ)| − log |S|+ Tr(SM(θ)−1)− p (1)

witn p is the number of manifest variables.
This function tests the fit of a model M to a population covariance matrix Σ, based on
the multivariate distribution of the elements of S.
If a correlation matrix is all that is available, what can you do?
Early users of LISREL did what the LISREL manual did — simply input the correlation
matrix and tell the program it was a covariance matrix.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

Consider the sample correlation matrix R computed from a sample covariance matrix S.
We can get R from S, but we can’t get S from R unless we have standard deviations
available.
This means, pretty obviously, that there is more information in S than in R, and so
although R looks like a covariance matrix (because it is!), its non-redundant elements are
different in number, and have a different multivariate distribution, than those of S.

James H. Steiger (Vanderbilt University) Structural Equation Models: Some Selected Examples 6 / 116



The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

Consider the simple case of a 2× 2 sample covariance matrix S.
It has 3 non-redundant elements in it.
Now suppose I were to transform S into its corresponding correlation matrix R.
How many non-redundant elements would R have in it? Just one.
Clearly, the tri-variate distribution of the non-redundant elements of S in this case cannot
be the same as the univariate distribution of the single random element of R.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

The LISREL manual detailed several examples in which a correlation matrix was
incorrectly analyzed as a covariance matrix.
It was easy to get LISREL (or any other program) to do this. Simply input the correlation
matrix and tell the program it is a covariance matrix!
There were occasional statements that one shouldn’t analyze correlations, but these were
never rendered in a clear style that would lead one to conclude that LISREL output was
incorrect.
Many LISREL users came away with the mistaken notion that correlations should never
be analyzed on statistical grounds, rather than the more reasonable conclusion that
correlations couldn’t be analyzed correctly by LISREL.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

By the early 1990’s, several computer programs could correctly analyze correlations, but
LISREL still could not.
What was particularly intriguing about the situation was that the classic textbook Factor
Analysis as a Statistical Method, by Lawley and Maxwell (1971), actually devoted a
chapter explaining why a confirmatory factor analysis that treated a correlation matrix as
if it were a covariance matrix would often generate correct parameter estimates, but
wrong standard errors.
The Lawley-Maxwell chapter contained a fully worked numerical example.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

Lawley and Maxwell(1971) gave formulae for computing standard errors when a
covariance matrix is analyzed, and provided an alternative method for computing standard
errors when the sample correlation matrix is analyzed.
The formulae are illustrated with a numerical example, the results of which are presented
in their Tables 7.9 (page 99) and 7.10 (page 102).
The Lawley-Maxwell example was based on an analysis in a paper by Jöreskog and Lawley
(1968), which used data from Holzinger and Swineford (1939). Nine psychological tests
were administered to 72 seventh and eighth grade students.
The path diagram is on the next slide.
Lawley and Maxwell did not use ULI (Unit Loading Identification) constraints in their
model. Rather, in keeping with standard practice in factor analysis, they parameterized
their model to have unit variances.

James H. Steiger (Vanderbilt University) Structural Equation Models: Some Selected Examples 10 / 116



The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

On the next few slides, I give the factor loadings and standard errors (incorrect version in
parentheses) tables from Lawley, followed by output from my own program SEPATH that
correctly analyzes correlation matrices directly.
As you can see (keeping in mind that variables are presented in different order by Lawley),
the results agree with his.
SEPATH has the ability to override the correct analysis and analyze the correlation matrix
incorrectly as if it were a covariance matrix, so we can also reproduce the incorrect
version of standard errors given by Lawley.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

As we have already pointed out, there is an alternative parameterization of the
Lawley-Maxwell confirmatory analysis, in which the factor variances are estimated and a
ULI (Unit Loading Identification) constraint is employed.
It should be emphasized that the parameter estimates for this model will generally be
different from those in the standardized factor model, and the standard errors will also be
different.
Such a model can be analyzed correctly with a correlation matrix, and in general the
standard errors obtained with this parameterization will (like the parameter estimates
themselves) be different both from the alternative parameterization and from the
incorrect processing of a correlation matrix as if it were a covariance matrix.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

In general, if a correlation matrix is processed incorrectly as if it were a covariance matrix
in a scale-invariant factor model, the parameter estimates will be correct. However, the
standard errors will not be correct.
In other words, if we contemplate the Lawley-Maxwell model, and restrict ourselves to
just the 4 loadings on the Visual factor, there are (at least) 4 possible versions of these
loadings when a correlation matrix is all that is available:

1 Unit Variance Correct (UVC). The factor has unit variance, and the standard errors for 4
loadings are correctly estimated.

2 Unit Variance Incorrect (UVI). The factor has unit variance, but the correlation matrix is
treated incorrectly as a covariance matrix, and the standard errors are incorrectly estimated.

3 ULI Correct (ULIC). The factor variance is a free parameter. Instead, a Unit Loading
Identification (ULI) constraint is used on the first variable. The 3 other loadings have
standard errors that are correctly estimated.

4 ULI Incorrect (ULII). The factor variance is a free parameter. Instead, a Unit Loading
Identification (ULI) constraint is used on the first variable. The 3 other loadings have
standard errors that are incorrectly estimated by treating the correlation matrix as a
covariance matrix.

SEPATH can generate all 4 kinds of estimates, and here they are, together with the
standard errors.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

Let’s analyze these data with Mplus.
The default parameterization in Mplus uses ULI constraints.
In the input below, we set sample size at 71, so that Mplus standard errors, computed
with a denominator of n, will match those of other programs that use n − 1.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

TITLE: LAWLEY-MAXWELL CONFIRMATORY MODEL

DATA: FILE is lawley.dat;

TYPE IS CORRELATION;

NOBSERVATIONS=71;

VARIABLE: NAMES ARE VIS_PERC CUBES LOZENGES PAR_COMP

SEN_COMP WRD_MNG ADDITION CNT_DOT ST_CURVE;

MODEL: VERBAL BY PAR_COMP SEN_COMP WRD_MNG;

VISUAL BY VIS_PERC CUBES LOZENGES ST_CURVE;

SPEED BY ST_CURVE CNT_DOT ADDITION;

OUTPUT: STANDARDIZED;
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

The basic loading output, shown below, has the incorrect standard errors.

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

VERBAL BY

PAR_COMP 1.000 0.000 999.000 999.000

SEN_COMP 0.955 0.099 9.638 0.000

WRD_MNG 0.908 0.101 8.950 0.000

VISUAL BY

VIS_PERC 1.000 0.000 999.000 999.000

CUBES 0.502 0.202 2.483 0.013

LOZENGES 0.970 0.220 4.416 0.000

ST_CURVE 0.987 0.250 3.947 0.000

SPEED BY

ST_CURVE 1.000 0.000 999.000 999.000

CNT_DOT 4.825 3.423 1.410 0.159

ADDITION 3.396 2.307 1.472 0.141
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

However, the standardized output (STDXY Standardization), transformed to unit variance
factors, matches the correct loading obtained with a unit variance factor parameterization in
SEPATH.

STANDARDIZED MODEL RESULTS

STDYX Standardization

Two-Tailed

Estimate S.E. Est./S.E. P-Value

VERBAL BY

PAR_COMP 0.908 0.036 25.520 0.000

SEN_COMP 0.867 0.041 21.413 0.000

WRD_MNG 0.824 0.047 17.656 0.000

VISUAL BY

VIS_PERC 0.679 0.086 7.868 0.000

CUBES 0.341 0.121 2.827 0.005

LOZENGES 0.659 0.089 7.442 0.000

ST_CURVE 0.670 0.113 5.957 0.000

SPEED BY

ST_CURVE 0.192 0.129 1.483 0.138

CNT_DOT 0.924 0.111 8.296 0.000

ADDITION 0.651 0.103 6.290 0.000
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

Mplus evidently obtains its standardized solution by taking the unstandardized solution
obtained with the ULI parameterization, transforming it to a standardized solution, and
then revising the standard errors.
Let’s see what happens when we directly program the standardized solution by demanding
unit variances for our factors.
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

TITLE: LAWLEY-MAXWELL CONFIRMATORY MODEL

DATA: FILE is lawley.dat;

TYPE IS CORRELATION;

NOBSERVATIONS=71;

VARIABLE: NAMES ARE VIS_PERC CUBES LOZENGES PAR_COMP

SEN_COMP WRD_MNG ADDITION CNT_DOT ST_CURVE;

MODEL: VERBAL BY PAR_COMP*;

VERBAL BY SEN_COMP*;

VERBAL BY WRD_MNG*;

VISUAL BY VIS_PERC*;

VISUAL BY CUBES*;

VISUAL BY LOZENGES*;

VISUAL BY ST_CURVE*;

SPEED BY ST_CURVE*;

SPEED BY CNT_DOT*;

SPEED BY ADDITION*;

VISUAL@1;

VISUAL WITH VERBAL*;

VISUAL WITH SPEED*;

VERBAL@1;

VERBAL WITH SPEED*;

SPEED@1;

OUTPUT: STANDARDIZED;
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

VERBAL BY

PAR_COMP 0.902 0.095 9.513 0.000

SEN_COMP 0.861 0.097 8.870 0.000

WRD_MNG 0.818 0.099 8.229 0.000

VISUAL BY

VIS_PERC 0.675 0.118 5.700 0.000

CUBES 0.339 0.129 2.630 0.009

LOZENGES 0.654 0.119 5.499 0.000

ST_CURVE 0.666 0.134 4.979 0.000

SPEED BY

ST_CURVE 0.190 0.129 1.471 0.141

CNT_DOT 0.918 0.141 6.506 0.000

ADDITION 0.646 0.130 4.973 0.000

VISUAL WITH

VERBAL 0.552 0.111 4.973 0.000

SPEED 0.474 0.143 3.324 0.001

VERBAL WITH

SPEED 0.088 0.133 0.661 0.509

Variances

VERBAL 1.000 0.000 999.000 999.000

VISUAL 1.000 0.000 999.000 999.000

SPEED 1.000 0.000 999.000 999.000
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

Although the solution clearly is standardized, and shows the factor variances fixed at one,
the estimates are different from those obtained by other software and by Mplus in its
standardized solution.
There is a reason for this, but it is sufficiently obscure that very few users would be
capable of understanding its genesis.
The standard errors are incorrect. They appear to be obtained by analyzing the
correlation matrix as if it were a covariance matrix.
However, the standardized solution printed after the direct unit variance model has both
the correct loadings and standard errors for a proper estimation from a correlation matrix!
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The Lawley-Maxwell Confirmatory Factor Analysis

The Lawley-Maxwell Confirmatory Factor Analysis

To summarize:
1 Although the DATA section of the Mplus input clearly labels the correlation matrix to be a

correlation matrix, the base Mplus output processes it as if it were a covariance matrix.
Incorrect standard errors are printed with both the unit variance and ULI parameterizations.

2 The MODEL RESULTS loadings are incorrect when the unit variance paramaterization is
selected to produce a standardized factor analysis solution directly. They disagree with those
printed by Mplus with the standardized solution, and with the results from other programs.

3 When a standardized solution is requested, and the base parameterization is employed, Mplus
returns correct loadings and standard errors with unit variance factors.
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Model Invariance Properties

Model Invariance Properties

In his classic paper on the proper processing of correlation matrices, Cudeck (1989)
discussed model invariance properties and how they related to what would happen when a
correlation matrix was treated improperly as a covariance matrix.
Subsequently, Browne and Shapiro (1991) presented methods that can be used to detect
whether a model fails to meet certain invariance properties.
Understanding model invariance can help explain some (but not all) of the phenomena we
just witnessed in connection with the Lawley example, and I’ve assigned the Cudeck paper
for reading.
Keep in mind, however, that Cudeck uses the somewhat confusing notation Σ = Σ(θ) to
stand for a covariance structure model, rather than Σ = M(θ) which many more recent
authors prefer.
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Model Invariance Properties

Model Invariance Properties

We begin with some definitions.
A covariance structure for a p × p covariance matrix Σ is a symmetric, matrix valued
function M(γ) of a q × 1 parameter vector γ.
The null hypothesis in covariance structure modeling is thus

Σ = M(γ) (2)

James H. Steiger (Vanderbilt University) Structural Equation Models: Some Selected Examples 30 / 116



Model Invariance Properties

Model Invariance Properties

A correlation structure is a symmetric, matrix-valued function R(θ) of a q × 1 parameter
vector θ with the restriction that diag(R(θ)) = diag(I). The null hypothesis for a
correlation structure model is that, for a population correlation matrix P,

P = R(θ) (3)
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Model Invariance Properties

Model Invariance Properties

A covariance structure model M(γ) is scale-invariant or invariant under changes of scale
if for any diagonal matrix Dα = {αj} with no zero entries, there exists another parameter
vector γ∗, such that

M(γ∗) = DαM(γ)Dα (4)

In other words, scale invariance implies that if a model fits a covariance matrix, it will fit
any rescaling of that covariance matrix for some parameter vector.
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Model Invariance Properties

Model Invariance Properties

A weaker form of invariance is invariance under a constant scaling factor.
Most covariance structures of any practical interest are at least invariant under a constant
scaling factor.
Some of the non-centrality based fit indices developed by Steiger (1989, 1990) require
that the model fitted be invariant under a constant scaling factor (ICSF).
A covariance structure model M(γ) is invariant under a constant scaling factor (ICSF) if,
for any positive constant τ , there exists another parameter vector γ∗, such that
M(γ∗) = τM(γ).
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Model Invariance Properties

Model Invariance Properties

Consider a covariance structure model Σ = M(γ). A parameter γi ∈ γ is scale-free if
1 The model is scale-invariant, and
2 for choices of Dα in Equation 4, γ∗i = γi .

Cudeck (1989, p. 318–319) gives examples of
1 A confirmatory factor model that is scale-invariant,
2 A scale-free parameter in such a model, and
3 A confirmatory factor model that is not scale-invariant.
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Model Invariance Properties

Model Invariance Properties

Suppose a covariance structure factor model M(γ) = ΛΦΛ′ + Ψ is scale-invariant.
Then the model can be re-expressed as

M(γ) = DσR(θ)Dσ (5)

= Dσ(Λ∗Φ∗Λ∗′ + Ψ∗)Dσ (6)

where R(θ) is a standardized common factor model, and the elements of Dσ are
population standard deviations.
If this model R(θ) fits the correlation matrix, then if the model is scale-invariant, one
must be able to find Dσ such that M(γ) fits the population covariance matrix.
If one’s main interest is testing a correlation structure model, then the values in Dα are
“nuisance parameters”. If the correlation structure fits, the covariance structure can
automatically be made to fit by setting Dα to the value required to match the diagonal of
the input covariance matrix.
The key aspect of this latter fact is that this will be true even if the input matrix is
actually a correlation matrix. The fact that the estimates in Dα will not actually be
estimates of the population standard deviations will be unimportant.
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Model Invariance Properties

Model Invariance Properties

Consequently, correlation structure models can be fit as covariance structure models of
the form

M(γ) = DσR(θ)Dσ (7)

with
γ ′ =

[
θ′ σ′

]
(8)

and σ containing the diagonal elements of Dσ.
The vector θ contains the parameters of the correlation structure, while σ contains the
nuisance parameters.
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Model Invariance Properties

Model Invariance Properties

Cudeck pointed out that if a covariance structure model is scale-invariant, the chi-square
test statistic will be the same regardless of whether the model is fit to the actual
covariance matrix or the correlation matrix.
If the model is not scale-invariant, then different scales will result in different fit values.
Consequently, the advice proffered in numerous books and computer manuals about
casually rescaling a variable in order to improve iteration should be accompanied by a
caveat. If the model is not scale-invariant, then the fit indices and statistical test results
will generally differ after rescaling.
The standard errors will generally be incorrect if methods based on an analysis of a
covariance matrix are applied incorrectly directly to a correlation matrix.
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Testing for Scale Invariance

Testing for Scale Invariance

Browne and Shapiro (1991) defined a reflector matrix corresponding to each of the typical
discrepancy functions for continuous variables.
They then showed how this reflector matrix could be analyzed to shed light on the
invariance properties of a particular model when fitted with a particular discrepancy
function.
We will begin by defining the reflector matrix corresponding to each type of discrepancy
function.
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Testing for Scale Invariance

Testing for Scale Invariance

Let S stand for the sample covariance matrix and Σ̂ stand for the reproduced matrix, i.e.,
M(γ) at the minimum point for that discrepancy function.
Furthermore, define Ê = S− Σ̂. Then the following reflector matrices (among others) can
be defined.

Ω̂ML = −Σ̂−1Ê (9)

Ω̂LS = −ÊΣ̂ (10)

Ω̂GLS = (S−1Σ̂− I)S−1Σ̂ (11)

In the next slide, we examine how the reflector matrices can be used to test invariance
properties.
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Testing for Scale Invariance

Testing for Scale Invariance

Browne and Shapiro (1991) give several corollaries which establish properties of reflector
matrices implied by various types of scale invariances. Their results include the following
corollaries:

1 Let M(γ) be invariant under a constant scaling factor. Then the sum of the diagonal
elements of Ω̂ is zero.

2 Let M(γ) be scale-invariant. Then all diagonal elements of Ω̂ are zero.

We can assess invariance under a constant scaling factor by examining the trace of the
reflector matrix, and we can assess scale invariance by examining the maximum diagonal
element.
Of course, in some cases lack of invariance is obvious from the model itself. If the
model-fitting software does not provide the reflector matrices or related indices, one may
simply try rescaling the input matrix by a constant or by a set of scale factors.
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Constraint Interaction

Constraint Interaction

In an earlier lecture, I alluded briefly to the options one has in standard SEM software to
parameterize the factors in a factor model as having either unit variance, or a fixed
loading on one variable (but not both).
One can also parameterize the “unique factors” as having unit variance, and have their
loading on their observed variable be a free parameter, or have the loading be 1 and
estimate the unique variance.
When the factor model is analyzed in isolation, either option is available.
As I mentioned before, there are good practical and theoretical reasons for fixing the
variance of exogenous latent variables (be they common or unique factors) at unity:

1 On the practical side, it is no longer possible to iterate to a solution that estimates negative
factor variances, and,

2 On the theoretical side, if (and it is a very big ”if”) the software can correctly analyze
correlations (or, equivalently, correctly standardize the manifest variables), then a fully
standardized factor solution can be obtained, comparable with what the originators of factor
analysis did.
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Constraint Interaction

Constraint Interaction

The Unit Loading Identification (ULI) constraints are intended to be employed solely to
establish identification.
The standard dictum is that each common factor in the factor model should have one ULI
constraint to establish identification of that factor’s variance.
We have already seen that, even with standard software, this restriction is generally not
necessary if the confirmatory common factor model is in isolation, or if the common
factors are exogenous. ULI constraints can be replaced by fixed unit variances for the
common factors in such cases.
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Constraint Interaction

Constraint Interaction

Things are much more problematic if the CFA model is embedded in a structural equation
model in which its factors are endogenous.
Standard SEM software does not input variance parameters for endogenous variables.
Rather, the variances of endogenous variables are established as a consequence of the
variances and covariances of the exogenous variables in the model,m and the structural
paths leading from them to the endogenous variables (possibly indirectly through other
endogenous variables).
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ULI Constraints and Identification

ULI Constraints and Identification

Let’s look at a simple CFA model, analyze its behavior in isolation, and then embed it in
a larger, very familiar structural equation model.
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ULI Constraints and Identification

ULI Constraints and Identification
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ULI Constraints and Identification

ULI Constraints and Identification
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ULI Constraints and Identification

ULI Constraints and Identification

Examining these models, we note first that latent variable η1 is never observed, and so its
variability may only be inferred from two sources:

1 the variances and covariances of the variables with paths leading to η1,
2 the values of the path coefficients leading to η1.
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ULI Constraints and Identification

ULI Constraints and Identification

The variances of η1 and η2 are not uniquely defined, and are free to vary unless some
constraints are imposed on the free parameters in our confirmatory model.
To see why, suppose that the ULI constraints were removed from λ1,1 and λ2,1, and that,
by some combination of circumstances, the paths leading to η1 and η2 had values that
caused η1 to have a variance of 1.
Suppose further that under these circumstances, the values .6, .3, .6, and .3 for
parameters λ1,1,λ2,1,λ3,2, and λ4,2 lead to an optimal fit of the model to the data.
The upper diagram in the figure on the next slide shows this situation.
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ULI Constraints and Identification

ULI Constraints and Identification
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ULI Constraints and Identification

ULI Constraints and Identification

Next, imagine we wished the variance of η1 to be some value other than 1, say, 4.
Quadrupling a variable’s variance can be accomplished by doubling its standard deviation,
or doubling every value of the variable.
To achieve this, while maintaining the identical numbers arriving at Y1, Y2 and η2 from
η1, we need only double all values on paths leading to η1, while simultaneously halving all
values (λ1,1, λ2,1, and β2,1) on paths leading away from η1.
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ULI Constraints and Identification

ULI Constraints and Identification

Every number emerging from η1 is doubled, but is “passed through” coefficients that are
now exactly half what they were. So the numbers emerging at Y1, Y2, and η2 are the
same as they were.
Because ψ1,1 and γ1,1 are free parameters that are attached to unidirectional paths, we
can alter them (to halve the values of all numbers arriving at η1) without affecting
anything in the paths leading into our measurement model when it is embedded in a
larger model, as shown on the next slide.
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ULI Constraints and Identification

ULI Constraints and Identification
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The pipeline metaphor has helped us to see why ULI constraints are necessary to identify
the coefficients in a path model. Without the application of such a constraint, we can see
that the variances of our latent variables could be any positive value.
Now, the choice of a constraint to apply is, in a sense, arbitrary. Why do you think the
“powers that be” chose to set one loading to 1, rather than to, say, 2? Is there some
other, more natural constraint that people might have chosen?
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How about constraining the endogenous latent variables to have variances of 1?
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When we change the particular constraint we employ to achieve identification, what
things (if any) remain constant?
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ULI Constraints and Identification
Characteristics of Properly Deployed ULI Constraints

By using the pipeline metaphor, we’ve deduced some things.
1 When a ULI constraint is applied to a parameter, the primary goal is simply to establish

identification, and the precise value that the parameter is fixed to will not affect the fit of the
model. Specifically, one could use the value 2.0 instead of 1.0, and the test statistic for the
model would remain the same, because the fit of the model is invariant under change of scale
of its latent variables.

2 The particular manifest variable chosen for the ULI constraint for any latent variable should
not affect model fit. In the present example, fit will be the same if we constrain either λ1,1 or
λ2,1 (but not both).

3 Path coefficients leading from a latent variable have the same relative magnitude regardless
of the fixed value used in a ULI. Their absolute magnitude will go up or down depending on
the fixed value used in the ULI. So, for example, if one changes the 1.0 to a fixed value of
2.0, all path coefficients leading from the latent variable will double.

4 Any multiplicative change in the ULI constraint applied to a path coefficient will be mirrored
by a corresponding division of the standard deviation of the latent variable the path leads
from, and a corresponding division of path coefficients leading to the latent variable.
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ULI Constraints and Identification
Characteristics of Properly Deployed ULI Constraints

The above properties reflect the way ULI constraints are supposed to work in practice.
The constraints are intended to be essentially arbitrary values imposed solely to achieve
identification, and are not intended to have any substantive impact on model fit or model
interpretation.
There seems to be some confusion in the literature about the latter point.
Some sources make a statement to the effect that a ULI constraint for the loading of a
particular manifest variable fixes the scale of the latent variable to be “the same as the
manifest variable.”
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ULI Constraints and Identification
Characteristics of Properly Deployed ULI Constraints

This misconception has led to the use of the term reference variable to refer to the
manifest variable with the ULI attached.
This view not quite right — if a value of unity is employed, the variance of the latent
variable is fixed to the variance of the common part of the manifest variable which has
the ULI constraint.
Moreover, as we have already seen, all other loadings emanating from the latent variable
move up or down in concert with the value selected for the ULI constraint, and the
variance of the common part is itself determined by the choice of variables in the
measurement model.
The key issue here is that residual variance includes error variance and unique variance, so
fixing the metric of the latent variable to an observed variable’s common variance has
dubious value.
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

With these goals in mind, it seems reasonable to ask which hypotheses are invariant under
choice of ULI constraints (or equivalently, under a choice of the scale of the latent
variable), and which are not.
Unless a particular choice of constraint (or latent variable variance) has a specific
substantive meaning, a hypothesis that is not invariant under a choice of constraints will
be difficult if not impossible to interpret.
For example, is the hypothesis that λ1,1 equals λ2,1 in the the general model invariant
under a change of scale of the latent variables? (C.P.)
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

From the preceding analysis, it would seem that the answer is yes, since any change in the
ULI constraint would be reflected proportionally in coefficients λ1,1 and λ2,1.
The choice of the particular value employed in the identifying constraint has no effect on
this hypothesis.
Another way of putting it is that the particular value of the variance of η1 has no effect
on the truth or falsity of the hypothesis.
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

Similarly, the hypothesis that λ3,2 and λ4,2 are equal is invariant under choice of the fixed
value employed in an identifying constraint on the variance of η2.
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

We have established there are hypotheses about the model coefficients that are invariant
under the choice of value we fix latent variable variances to, so long as the constraints are
only to achieve identification.
It seems reasonable to suggest that, if a hypothesis is invariant under the choice of the
fixed value used in the identifying constraint, then the hypothesis might be considered
meaningful when the value of 1.0 typically used in the ULI is used.
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

Consider the hypothesis
H0 : λ2,1 = λ4,2

Is the truth status of this hypothesis invariant under a choice of identification constraint?
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

The answer is “no.” This hypothesis is not invariant under the choice of fixed value
employed in the identifying constraint on λ1,1.
Doubling the fixed value of λ1,1 doubles the value of λ2,1 while leaving λ4,2 unchanged.
In this case, the hypothesis is not invariant under change of scale of the latent variables.
This has an important implication: When ULI constraints are used, the variances of
factors are fixed at a value that is essentially an accident. The factors will almost never
have a variance of 1.
Consequently, the model that includes the restriction λ2,1 = λ4,2 will not be the same
model when unit variances are imposed as when ULI constraints are imposed.
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

On the next slide, we have a table from Steiger(2002) listing the Σ-constraints for the
two models.
You can see that the two models have identical constraints except for one.
Note that the model using ULI constraints has a more restrictive final Σ-constraint than
the model using unit variances. Some covariance matrices that satisfy the constraint on
the far right will not satisfy the constraint that σ4,1 = σ3,2.
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ULI Constraints and Identification
Invariance of Hypotheses under Choice of Constraints

So we see that some hypotheses might make sense when ULI constraints (or other
arbitrary identification constraints) are employed, while others might not make sense.
The impression given by many textbooks is that ULI constraints are automatic and, in a
sense, arbitrary. They might be within the simple context of a few textbook examples,
but in the larger framework of structural equation modeling in full generality, they might
not be.
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ULI Constraints and Identification
Some Questions to Ask

In analyzing whether a ULI constraint (or set of constraints) is truly arbitrary, we should
ask questions like these:

1 Does the goodness-of-fit statistic remain invariant under the choice of fixed value employed
in the identifying constraint? That is, if we change the 1.0 to some other number, does the
value remain constant?

2 Does the goodness-of-fit statistic remain invariant under the choice of which manifest
variable is the reference variable?

3 Do the relative sizes of path coefficients leading to the latent variable remain invariant under
the choice of the fixed value employed in the identifying constraint?

4 Do the relative sizes of path coefficients leading from the latent variable remain invariant
under the choice of the reference variable?
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When Constraints Interact
Problems with the Chi-Square Difference Test

In structural equation modeling, a hypothesis of equality of path coefficients is usually
tested with a chi-square difference test.
Unfortunately, some chi-square difference tests do not perform in the intended
manner—they are compromised by a phenomenon I call constraint interaction.
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When Constraints Interact
Problems with the Chi-Square Difference Test

To examine constraint interaction in a simple context, suppose one wished to test the
hypothesis that λ2,1 and λ4,2 are equal (perhaps in an effort to convince people that they
are not equal) in the simple factor model on the next slide.
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When Constraints Interact
Problems with the Chi-Square Difference Test
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When Constraints Interact
Problems with the Chi-Square Difference Test

The difference test would normally proceed as follows:
1 First fit a version of this model with the two loadings constrained to be equal.
2 Then fit the model without the single equality constraint.
3 The difference between the two χ2 statistics is a χ2 with 1 degree of freedom.

However, what seems to be straightforward turns out not to be.
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When Constraints Interact
A Challenging Example

Consider the following matrix:

Σ =


3.490 0.420 0.112 0.168
0.420 3.360 0.096 0.144
0.112 0.096 1.160 0.240
0.168 0.144 0.240 1.360

 (12)

As you could quickly verify by loading MPLUS or LISREL, this matrix perfectly fits the
factor model where, instead of ULI constraints, the factors are constrained to have unit
variances and λ2,1 = λ4,2. The model equations are shown in the following slide.
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When Constraints Interact
A Challenging Example

The model can be written as:

Λy =


λ1,1 0
λ2,1 0

0 λ3,2

0 λ2,1

 (13)

Ω =

[
1 ω2,1

ω2,1 1

]
(14)

Θε =


θ1,1 0 0 0

0 θ2,2 0 0
0 0 θ3,3 0
0 0 0 θ4,4

 (15)
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When Constraints Interact
A Challenging Example

We can verify that the following numerical values perfectly reproduce the Σ of Equation
12 via the confirmatory factor analysis formula Σ = ΛyΩΛ′

y + Θε.

Λy =


.7 0
.6 0
0 .4
0 .6

 (16)

Ω =

[
1 .4
.4 1

]
(17)

Θε =


3 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

 (18)
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When Constraints Interact
A Challenging Example

Here are the calculations in R

> Lambda.y <- matrix(c(.7,.6,0,0,0,0,.4,.6),4,2)

> Omega <- matrix(c(1,.4,.4,1),2,2)

> Theta.epsilon <- diag(c(3,3,1,1))

> Lambda.y

[,1] [,2]

[1,] 0.7 0.0

[2,] 0.6 0.0

[3,] 0.0 0.4

[4,] 0.0 0.6

> Omega

[,1] [,2]

[1,] 1.0 0.4

[2,] 0.4 1.0

> Theta.epsilon

[,1] [,2] [,3] [,4]

[1,] 3 0 0 0

[2,] 0 3 0 0

[3,] 0 0 1 0

[4,] 0 0 0 1

> Sigma <- Lambda.y %*% Omega %*% t(Lambda.y) + Theta.epsilon

> Sigma

[,1] [,2] [,3] [,4]

[1,] 3.490 0.420 0.112 0.168

[2,] 0.420 3.360 0.096 0.144

[3,] 0.112 0.096 1.160 0.240

[4,] 0.168 0.144 0.240 1.360
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When Constraints Interact
A Challenging Example

So we see that a CFA model with two loadings constrained to be equal and the factors
constrained to have unit variances fits perfectly.
However, an alternative way of parameterizing such a model might seem to be to use two
ULI constraints, as in the equations on the next slide.
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When Constraints Interact
A Challenging Example

Λy =


1 0
λ2,1 0

0 1
0 λ2,1

 (19)

Ω =

[
ω1,1 ω2,1

ω2,1 ω2,2

]
(20)

Θε =


θ1,1 0 0 0

0 θ2,2 0 0
0 0 θ3,3 0
0 0 0 θ4,4

 (21)
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When Constraints Interact
A Challenging Example

Surprise!
When you fit the model using ULI constraints and the equality constraint with Mplus, the
model does not fit the Σ of Equation 12 perfectly!
It is not the same model.
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When Constraints Interact
A Challenging Example

Looking carefully at the model diagram, we can see that, when implemented with ULI
constraints, it not only forces λ2,1 and λ4,2 to be equal, it also requires that λ1,1 and λ3,2

also be equal, since they are both constrained to be equal to 1.
However, Σ was not generated by a Λy with λ1,1 and λ3,2 equal (their values were .70
and .40), and so the model fails to fit perfectly.
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When Constraints Interact
A Challenging Example

We have seen that two seemingly equivalent methods for identifying factor variances are
not always equivalent.
Without the equality constraint λ2,1 = λ4,2 the two methods for fixing variances are
equivalent.
When this equal loadings constraint is added, the two methods yield models that are not
Σ-equivalent.
What this means, in turn, is that a χ2 difference test of the hypothesis that λ2,1 = λ4,2

will produce different results, depending on whether the model is parameterized with ULI
constraints or with standardized (unit variance) latent variables.
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When Constraints Interact
A Challenging Example

On the next slides, we will examine Mplus output for several conditions, with and without
the use of ULI constraints, and with and without the restriction that λ2,1 = λ4,2.
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When Constraints Interact
A Challenging Example

INPUT INSTRUCTIONS

TITLE: Simple Confirmatory Steiger(2002)

DATA: FILE is 4x2.dat;

TYPE IS COVARIANCE;

NOBSERVATIONS=101;

VARIABLE: NAMES ARE Y1-Y4;

MODEL: ETA1 BY Y1 Y2;

ETA2 BY Y3 Y4;

ETA1 WITH ETA2;

Chi-Square Test of Model Fit

Value 0.000

Degrees of Freedom 1

P-Value 1.0000

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

ETA1 BY

Y1 1.000 0.000 999.000 999.000

Y2 0.857 1.386 0.618 0.536

ETA2 BY

Y3 1.000 0.000 999.000 999.000

Y4 1.500 2.386 0.629 0.530

ETA1 WITH

ETA2 0.111 0.176 0.631 0.528

Variances

ETA1 0.485 0.873 0.556 0.578

ETA2 0.158 0.269 0.589 0.556

Residual Variances

Y1 2.970 0.936 3.175 0.001

Y2 2.970 0.744 3.994 0.000

Y3 0.990 0.292 3.396 0.001

Y4 0.990 0.593 1.670 0.095
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A Challenging Example

INPUT INSTRUCTIONS

TITLE: Simple Confirmatory Steiger(2002)

DATA: FILE is 4x2N10.dat;

TYPE IS FULLCOV;

NOBSERVATIONS=10;

VARIABLE: NAMES ARE Y1-Y4;

MODEL: ETA1 BY Y1 Y2;

ETA2 BY Y3 Y4;

ETA1 WITH ETA2;

Chi-Square Test of Model Fit

Value 0.000

Degrees of Freedom 1

P-Value 1.0000

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

ETA1 BY

Y1 1.000 0.000 999.000 999.000

Y2 0.857 4.404 0.195 0.846

ETA2 BY

Y3 1.000 0.000 999.000 999.000

Y4 1.500 7.582 0.198 0.843

ETA1 WITH

ETA2 0.101 0.508 0.199 0.843

Variances

ETA1 0.441 2.523 0.175 0.861

ETA2 0.144 0.777 0.185 0.853

Residual Variances

Y1 2.700 2.703 0.999 0.318

Y2 2.700 2.148 1.257 0.209

Y3 0.900 0.842 1.069 0.285

Y4 0.900 1.712 0.526 0.599
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When Constraints Interact
A Challenging Example

Most structural equation modeling programs will return the same model estimates for a
given input covariance matrix, regardless of the sample size.
Mplus, on the other hand, gives estimates that can vary as a function of sample size.
Why is this so?
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A Challenging Example

> S <- matrix(c(3.490, 0.420, 0.112, 0.168,

+ 0.420, 3.360, 0.096, 0.144,

+ 0.112, 0.096, 1.160, 0.240,

+ 0.168, 0.144, 0.240, 1.360),4,4,byrow=TRUE)

> fixS <- function(S,n){

+ return(S*n/(n-1))

+ }

> fixS(S,10)

[,1] [,2] [,3] [,4]

[1,] 3.8777778 0.4666667 0.1244444 0.1866667

[2,] 0.4666667 3.7333333 0.1066667 0.1600000

[3,] 0.1244444 0.1066667 1.2888889 0.2666667

[4,] 0.1866667 0.1600000 0.2666667 1.5111111
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A Challenging Example

INPUT INSTRUCTIONS

TITLE: Simple Confirmatory Steiger(2002)

DATA: FILE is 4x2N10.dat;

TYPE IS FULLCOV;

NOBSERVATIONS=10;

VARIABLE: NAMES ARE Y1-Y4;

MODEL: ETA1 BY Y1 Y2;

ETA2 BY Y3 Y4;

ETA1 WITH ETA2;

Chi-Square Test of Model Fit

Value 0.000

Degrees of Freedom 1

P-Value 1.0000

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

ETA1 BY

Y1 1.000 0.000 999.000 999.000

Y2 0.857 4.405 0.195 0.846

ETA2 BY

Y3 1.000 0.000 999.000 999.000

Y4 1.500 7.580 0.198 0.843

ETA1 WITH

ETA2 0.112 0.564 0.199 0.843

Variances

ETA1 0.490 2.802 0.175 0.861

ETA2 0.160 0.863 0.185 0.853

Residual Variances

Y1 3.000 3.003 0.999 0.318

Y2 3.000 2.387 1.257 0.209

Y3 1.000 0.936 1.069 0.285

Y4 1.000 1.902 0.526 0.599
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When Constraints Interact
A Challenging Example

INPUT INSTRUCTIONS

TITLE: 4x2 Equal Loadings and ULI Steiger(2002)

DATA: FILE is 4x2.dat;

TYPE IS COVARIANCE;

NOBSERVATIONS=101;

VARIABLE: NAMES ARE Y1-Y4;

MODEL: ETA1 BY Y1;

ETA1 BY Y2(1);

ETA2 BY Y3;

ETA2 BY Y4(1);

ETA1 WITH ETA2;

OUTPUT: STANDARDIZED;

Chi-Square Test of Model Fit

Value 0.062

Degrees of Freedom 2

P-Value 0.9694

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

ETA1 BY

Y1 1.000 0.000 999.000 999.000

Y2 1.154 1.303 0.886 0.376

ETA2 BY

Y3 1.000 0.000 999.000 999.000

Y4 1.154 1.303 0.886 0.376

ETA1 WITH

ETA2 0.109 0.173 0.632 0.527

Variances

ETA1 0.359 0.504 0.713 0.476

ETA2 0.206 0.258 0.800 0.424

Residual Variances

Y1 3.089 0.648 4.767 0.000

Y2 2.854 0.756 3.777 0.000

Y3 0.944 0.281 3.362 0.001

Y4 1.070 0.362 2.952 0.003
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When Constraints Interact
A Challenging Example

INPUT INSTRUCTIONS

TITLE: 4x2 Equal Loadings and Unit Variances Steiger(2002)

DATA: FILE is 4x2.dat;

TYPE IS COVARIANCE;

NOBSERVATIONS=101;

VARIABLE: NAMES ARE Y1-Y4;

MODEL: ETA1 BY Y1* ;

ETA1 BY Y2*(1);

ETA2 BY Y3*;

ETA2 BY Y4*(1);

ETA1 WITH ETA2;

ETA1@1;

ETA2@1;

OUTPUT: STANDARDIZED;

Chi-Square Test of Model Fit

Value 0.000

Degrees of Freedom 2

P-Value 1.0000

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

ETA1 BY

Y1 0.697 0.563 1.238 0.216

Y2 0.597 0.366 1.630 0.103

ETA2 BY

Y3 0.398 0.284 1.399 0.162

Y4 0.597 0.366 1.630 0.103

ETA1 WITH

ETA2 0.400 0.396 1.009 0.313

Variances

ETA1 1.000 0.000 999.000 999.000

ETA2 1.000 0.000 999.000 999.000

Residual Variances

Y1 2.970 0.852 3.486 0.000

Y2 2.970 0.606 4.901 0.000

Y3 0.990 0.252 3.923 0.000

Y4 0.990 0.457 2.168 0.030
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When Constraints Interact
An Unnecessary Constraint

Before discussing this phenomenon in more detail, we should digress briefly to note an
important, and apparently unnoticed fact that helps explain the source of the
nonequivalency.
When the model includes the constraint that λ2,1 = λ4,2, only one ULI constraint (or,
alternatively, unit variance constraint) is necessary to establish identification. For
example, consider again the model of Equation 19.
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When Constraints Interact
An Unnecessary Constraint

Although the frequently cited “rule” for identifying variables might lead one to believe
that two ULI constraints are necessary to identify this model, it actually will remain
identified if one of the ULI constraints is relaxed.
Suppose we relax the constraint on λ1,1, and allow it to be a free parameter.
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When Constraints Interact
An Unnecessary Constraint

The model equations become

Λy =


λ1,1 0
λ2,1 0

0 1
0 λ2,1

 (22)

Ω =

[
ω1,1 ω2,1

ω2,1 ω2,2

]
(23)

Θε =


θ1,1 0 0 0

0 θ2,2 0 0
0 0 θ3,3 0
0 0 0 θ4,4

 (24)
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When Constraints Interact
An Unnecessary Constraint

Let’s look at the path diagram and use the pipeline metaphor to see why the variances of
the common factors are still identified despite the removal of one of the ULI constraints.
Who can explain it? (C.P.)
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An Unnecessary Constraint

Imagine that the variances of η1 and η2 are identified at some value, and that the model
fits perfectly.
Now ask the question, can we vary the variance of either η1 or η2 and compensate for it
by adjusting other model coefficients?
First imagine that we double the standard deviation of η1. We could try to compensate
for this by halving all coefficients attached to η1 (i.e., λ1,1, λ2,1, and ω1,2).
Note however that halving the value of λ2,1 would require halving the value of λ4,2

because of the equality constraint. However, this cannot be done without changing the fit
of the model.
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An Unnecessary Constraint

We have discovered a surprising fact. The equality constraint on the λ’s not only
constrains them to be equal, it also fixes the variance of η1 to a particular value. What
value? The value is essentially arbitrary, i.e., it might be described as “whatever value
occurs when λ3,2 is fixed at 1, and λ2,1 and λ4,2 are constrained to be the same free
parameter.”
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An Unnecessary Constraint

Consequently, once the equality constraint on the λ’s is in place, the unnecessary second
ULI (or unit variance) constraint actually overconstrains the model beyond what is
necessary for identification.
The effect of the unnecessary additional constraint depends on its type — adding the
second ULI constraint forces parallel λ’s to be equal, while adding a second unit variance
constraint forces the factor variances to be standardized.
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An Unnecessary Constraint

INPUT INSTRUCTIONS

TITLE: 4x2 Equal Loadings and ULI Steiger(2002)

DATA: FILE is 4x2.dat;

TYPE IS COVARIANCE;

NOBSERVATIONS=101;

VARIABLE: NAMES ARE Y1-Y4;

MODEL: ETA1 BY Y1;

ETA1 BY Y2(1);

ETA2 BY Y3*;

ETA2 BY Y4(1);

ETA1 WITH ETA2;

OUTPUT: STANDARDIZED;

Chi-Square Test of Model Fit

Value 0.000

Degrees of Freedom 1

P-Value 0.9993

STD Standardization

Two-Tailed

Estimate S.E. Est./S.E. P-Value

ETA1 BY

Y1 0.696 0.626 1.111 0.266

Y2 0.597 0.545 1.097 0.273

ETA2 BY

Y3 0.398 0.338 1.178 0.239

Y4 0.597 0.494 1.208 0.227

ETA1 WITH

ETA2 0.400 0.404 0.990 0.322

Variances

ETA1 1.000 0.000 999.000 999.000

ETA2 1.000 0.000 999.000 999.000

Residual Variances

Y1 2.971 0.935 3.179 0.001

Y2 2.970 0.744 3.992 0.000

Y3 0.990 0.291 3.397 0.001

Y4 0.990 0.593 1.670 0.095
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A Damaging Side-Effect

Unfortunately, the χ2 difference test for equal λ’s cannot be performed unless the
identification constraints are kept constant for the two tests, because if the unnecessary
identification constraint is removed, the two models will have the same degrees of
freedom, and will not be nested.
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When Constraints Interact
Some Implications

The results discussed in this section have several important implications:
1 A χ2 difference test for equal factor loadings on different factors is not “scale-free,” i.e., it

depends upon the scaling of the factors involved.
2 If loadings on different factors are constrained to be equal, then the factor variances may be

identified without a ULI constraint being employed on every factor.
3 Conditions (1) and (2) may generalize to many situations other than the simple one

discussed here. They will certainly generalize to any situation that can be conceptualized as
a factor model.

4 When the χ2 difference test is not scale-invariant, choice of a particular scale might be based
on substantive grounds. If no reasonable substantive grounds exist, then such a test may not
be meaningful.
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When Constraints Interact
Some Implications

The lessons learned in the context of a simple confirmatory factor analysis model
generalize to more complex structural equation models. In my 2002 article, “When
Constraints Interact,” I demonstrate how some classic models, including a well-known
example from the early LISREL manuals, falls prey to this problem.

James H. Steiger (Vanderbilt University) Structural Equation Models: Some Selected Examples 99 / 116



A Simple Numerical Approach To Detecting Constraint Interaction

A Simple Numerical Approach To Detecting Constraint Interaction

Constraint interaction, when it occurs, has an important implication — equality of two
coefficients will not be invariant under changes of scale of the latent variables.
Whether a hypothesis test “makes sense” under such circumstances is an issue to be
addressed in a subsequent section.
Here, we concentrate on a simple approach to detecting constraint interaction in practice.
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Recall that, when constraints interact, a model that fits perfectly under one
parameterization will not fit perfectly under another.
This is because the model itself is not invariant under changes of scale of the latent
variables.
One way of testing whether a model is sensitive to the scale of the latent variables is to
test whether the fit of the model is sensitive to the value used in the ULI constraint.
Generally, of course, this value is set equal to 1.
For models that are invariant under changes of scale of the latent variables, the
magnitude of this value may be varied to any nonzero number without affecting model fit.
However, for models that are not invariant under changes of scale, varying the magnitude
of the value will affect model fit.
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Consequently, a simple way of detecting constraint interaction is the following:
1 For the model with equality constraints, compute a χ2 fit statistic with the standard ULI

constraints in place;
2 Then, alter the model so that one of these constraints is altered, say, to a value of 2 instead

of 1;
3 Recompute the χ2 statistic;
4 If the two χ2 statistics are not identical within rounding error, and convergence has occurred

in each case, then the model is not invariant under changes of scale of the latent variables.
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One of the lessons learned in the preceding discussion is that equality constraints that
hold for one scaling of a set of variables need not hold for another scaling.
One “natural” scaling that is sometimes considered is a completely standardized model, in
which all variables, both manifest and latent, have unit variances.
Consider again the general model shown on next slide.
There were several barriers to obtaining a correct completely standardized solution with
correct standard errors.

1 Most programs couldn’t analyze correlations successfully.
2 Although it was straightforward to fix exogenous factor variances at 1 (and remove the ULI

constraint), it was not possible to control the variance of the endogenous latent variables.
Their variances were simply a consequence of other model coefficients, variances, and
covariances.

The typical way most structural equation modeling programs achieved a fully
standardized solution was as follows:

1 Fit the model using ULI constraints.
2 Use standard regression algebra to convert the model to standarized form.
3 Do not report standard errors.
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Unfortunately, this approach can fail with certain models and data sets.
Suppose that we wish to fit a completely standardized version of the model on the
preceding slide, while incorporating the restriction that γ1,1 = γ2,1.
If the standard approach is taken (ULI constraints on both factors, followed by post-hoc
computation of the model coefficients), the model will not be assessed properly, because
two ULI constraints are not necessary to identify the variances of the endogenous latent
variables.
Let’s examine how this plays out in a numerical example from Steiger(2002).

James H. Steiger (Vanderbilt University) Structural Equation Models: Some Selected Examples 105 / 116



Investigating Constraint Interaction in the General Model

Investigating Constraint Interaction in the General Model

Steiger(2002, Equation 13) gave the covariance matrix shown below as input to the
General Model.
He asserted that a completely standardized model fit this matrix with all ULI constraints
replaced by unit variance constraints on the factors, and with γ1,1 = γ2,1.
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The SEPATH prgram uses a constrained estimation procedure that automatically iterates
to a solution with unit variances, automatically analyzes correlations correctly, and, in this
case of artificial data, finds perfect fit – a χ2 value of 0.
Here are the results.
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If we do a standard setup in MPLUS, using ULI constraints on all variables, and calling
for a standardized solution, with γ1,1 = γ1,2, we get the following.
The perfect fit is not found.

INPUT INSTRUCTIONS

TITLE: TEST DATA FROM STEIGER(2002)

DATA: FILE IS Steiger02Test.dat;

TYPE IS COVARIANCE;

NOBSERVATIONS = 932;

VARIABLE: NAMES ARE X1 X2 Y1 Y2 Y3 Y4;

MODEL: XI1 BY X1 X2;

ETA1 BY Y1 Y2;

ETA2 BY Y3 Y4;

ETA1 ON XI1 (1);

ETA2 ON XI1 (1);

ETA2 ON ETA1;

OUTPUT: STANDARDIZED;

Chi-Square Test of Model Fit

Value 1.924

Degrees of Freedom 7

P-Value 0.9639

As we see on the next slide, the estimates are also wrong. In particular, the loadings of
ETA1 and ETA2 on XI1 are not the same, and neither is equal to the correct value of
0.657.
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STDYX Standardization

Two-Tailed

Estimate S.E. Est./S.E. P-Value

XI1 BY

X1 0.430 0.049 8.827 0.000

X2 0.512 0.054 9.484 0.000

ETA1 BY

Y1 0.489 0.041 11.796 0.000

Y2 0.633 0.047 13.358 0.000

ETA2 BY

Y3 0.523 0.048 10.971 0.000

Y4 0.434 0.044 9.934 0.000

ETA1 ON

XI1 0.520 0.069 7.493 0.000

ETA2 ON

XI1 0.483 0.080 6.024 0.000

ETA1 0.451 0.094 4.819 0.000

Variances

XI1 1.000 0.000 999.000 999.000

Residual Variances

X1 0.815 0.042 19.440 0.000

X2 0.738 0.055 13.360 0.000

Y1 0.761 0.041 18.742 0.000

Y2 0.599 0.060 9.989 0.000

Y3 0.727 0.050 14.576 0.000

Y4 0.812 0.038 21.415 0.000

ETA1 0.729 0.072 10.082 0.000

ETA2 0.336 0.116 2.901 0.004
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If we remove one of the ULI constraints and re-run, we get almost the same results as
SEPATH. Because fit is perfect, MPLUS recovers the correct estimates and standard
errors, except for one anomaly.
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INPUT INSTRUCTIONS

TITLE: TEST DATA FROM STEIGER(2002)

DATA: FILE IS Steiger02Test.dat;

TYPE IS COVARIANCE;

NOBSERVATIONS = 931;

VARIABLE: NAMES ARE Y1 Y2 Y3 Y4 X1 X2;

MODEL:

XI1 BY X1*;

XI1 BY X2*;

XI1@1;

ETA1 BY Y1*;

ETA1 BY Y2*;

ETA2 BY Y3@1;

ETA2 BY Y4*;

ETA1 ON XI1 (1);

ETA2 ON XI1 (1);

ETA2 ON ETA1;

OUTPUT: STANDARDIZED;

Chi-Square Test of Model Fit

Value 0.000

Degrees of Freedom 6

P-Value 1.0000
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STANDARDIZED MODEL RESULTS

STDYX Standardization

Two-Tailed

Estimate S.E. Est./S.E. P-Value

XI1 BY

X1 0.512 0.048 10.631 0.000

X2 0.439 0.044 9.877 0.000

ETA1 BY

Y1 0.433 0.049 8.812 0.000

Y2 0.520 0.055 9.442 0.000

ETA2 BY

Y3 0.508 0.042 11.998 0.000

Y4 0.610 0.046 13.133 0.000

ETA1 ON

XI1 0.657 0.091 7.209 0.000

ETA2 ON

XI1 0.657 0.160 4.107 0.000

ETA1 0.136 0.165 0.824 0.410

Variances

XI1 1.000 0.000 999.000 999.000

Residual Variances

Y1 0.812 0.043 19.092 0.000

Y2 0.730 0.057 12.766 0.000

Y3 0.742 0.043 17.220 0.000

Y4 0.628 0.057 11.082 0.000

X1 0.738 0.049 14.936 0.000

X2 0.807 0.039 20.668 0.000

ETA1 0.568 0.120 4.737 0.000

ETA2 0.432 0.105 4.126 0.000
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Notice that, although the estimates for the two gammas are equal, the standard errors are
not.
The constrained estimation procedure has a standard error of 0.089 on each coefficient,
because with the constrained estimation procedure, the estimates are always the same
(when they are specified to be the same).
On the other hand, the method with one ULI constraint will generally not find the same
solution if fit is not perfect.
For example the raw test data in TestDataNonPerfectFit.txt generates a standardized
solution shown on the next slide with a χ2 of 10.33 with constrained estimation, while the
same data produce a standardized solution in Mplus that does not have equal gammas
after transformation to standardized form. The χ2 of 7.56 obtained by Mplus is the same
as the value obtained by SEPATH using the unconstrained estimation approach.
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INPUT INSTRUCTIONS

TITLE: TEST DATA FROM STEIGER(2002)

DATA: FILE IS TestDataNonPerfectFit.txt;

TYPE IS INDIVIDUAL;

VARIABLE: NAMES ARE Y1 Y2 Y3 Y4 X1 X2;

MODEL:

XI1 BY X1*;

XI1 BY X2*;

XI1@1;

ETA1 BY Y1*;

ETA1 BY Y2*;

ETA2 BY Y3@1;

ETA2 BY Y4*;

ETA1 ON XI1 (1);

ETA2 ON XI1 (1);

ETA2 ON ETA1;

OUTPUT: STANDARDIZED;

Chi-Square Test of Model Fit

Value 7.569

Degrees of Freedom 6

P-Value 0.2714
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STDYX Standardization

Two-Tailed

Estimate S.E. Est./S.E. P-Value

XI1 BY

X1 0.605 0.052 11.694 0.000

X2 0.414 0.042 9.795 0.000

ETA1 BY

Y1 0.405 0.046 8.812 0.000

Y2 0.514 0.053 9.757 0.000

ETA2 BY

Y3 0.490 0.042 11.687 0.000

Y4 0.629 0.048 13.203 0.000

ETA1 ON

XI1 0.715 0.088 8.098 0.000

ETA2 ON

XI1 0.425 0.172 2.477 0.013

ETA1 0.340 0.176 1.925 0.054

Intercepts

Y1 -0.014 0.033 -0.415 0.678

Y2 0.011 0.033 0.330 0.741

Y3 -0.010 0.033 -0.298 0.766

Y4 0.023 0.033 0.709 0.478

X1 -0.070 0.033 -2.133 0.033

X2 -0.037 0.033 -1.141 0.254

Variances

XI1 1.000 0.000 999.000 999.000

Residual Variances

Y1 0.836 0.037 22.476 0.000

Y2 0.736 0.054 13.596 0.000

Y3 0.760 0.041 18.476 0.000

Y4 0.605 0.060 10.092 0.000

X1 0.633 0.063 10.105 0.000

X2 0.828 0.035 23.615 0.000

ETA1 0.489 0.126 3.874 0.000

ETA2 0.497 0.085 5.852 0.000
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